Dynamics of a Family of Piecewise-Linear Area-Preserving Plane Maps II. Invariant Circles

نویسندگان

  • Jeffrey C. Lagarias
  • Eric Rains
چکیده

This paper studies the behavior under iteration of the maps Tab(x, y) = (Fab(x) − y, x) of the plane R2, in which Fab(x) = ax if x ≥ 0 and bx if x < 0. The orbits under iteration correspond to solutions of the difference equation xn+2 = 1/2(a−b)|xn+1|+1/2(a+b)xn+1−xn. This family of piecewise-linear maps of the plane has the parameter space (a, b) ∈ R2. These maps are area-preserving homeomorphisms of R2 that map rays from the origin into rays from the origin. We show the existence of special parameter values where Tab has every nonzero orbit contained in an invariant circle with an irrational rotation number, with invariant circles that are piecewise unions of arcs of conic sections. Numerical experiments indicate the possible existence of invariant circles for many other parameter values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of a Family of Piecewise-Linear Area-Preserving Plane Maps I. Invariant Circles

This paper studies the behavior under iteration of the maps Tab(x, y) = (Fab(x)−y, x) of the plane R2, in which Fab(x) = ax if x ≥ 0 and bx if x < 0. This family of piecewise-linear maps has the parameter space (a, b) ∈ R2. These maps are area-preserving homeomorphisms of R2 that map rays from the origin into rays from the origin. The orbits of the map are solutions of the nonlinear difference ...

متن کامل

Dynamics of a Family of Piecewise-Linear Area-Preserving Plane Maps I. Rational Rotation Numbers

This paper studies the behavior under iteration of the maps Tab(x, y) = (Fab(x)−y, x) of the plane R2, in which Fab(x) = ax if x ≥ 0 and bx if x < 0. The orbits under iteration correspond to solutions of the nonlinear difference equation xn+2 = 1/2(a− b)|xn+1|+1/2(a+ b)xn+1−xn. This family of piecewise-linear maps has the parameter space (a, b) ∈ R2. These maps are area-preserving homeomorphism...

متن کامل

Dynamics of a Family of Piecewise-linear Area-preserving Plane Maps Ii. Cantor Set Spectra

This paper studies the behavior under iteration of the maps Tab(x, y) = (Fab(x) − y, x) of the plane R2, in which Fab(x) = ax if x ≥ 0 and bx if x < 0. This family of maps has the parameter space (a, b) ∈ R2. These maps are area-preserving homeomorphisms of R2 that map rays from the origin into rays from the origin. The orbits of the map are solutions of the nonlinear difference operator of Sch...

متن کامل

Invariant sets for discontinuous parabolic area - preserving torus maps Peter Ashwin and Xin - Chu

We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive ...

متن کامل

Invariant sets for discontinuous parabolic area - preserving torus maps Peter Ashwin and Xin - Chu Fu

We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005